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Non-Riemannian Geometry of Macroscopic Spin 
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The non-Riemannian geometry of macroscopic spin distributions in thermo- 
dynamics and ferromagnetism is obtained from the respective partition functions. 
An expression for the Cartan torsion in terms of the chemical potential is obtained. 
Analogies with the Einstein-Cartan theory of gravitation are discussed. From 
the partition function of ferromagnetism a spin-torsion relation analogous to the 
one obtained in Einstein-Cartan theory is given where piezomagnetic effects are 
taken into account. 

1. INTRODUCTION 

Based on early work by Ikeda (1978) on Finsler geometry and thermody- 
namics, we compute the metric and torsion of a partition function of thermo- 
dynamics. A partition function of ferromagnetism is used with Amari's (1962) 
stress and deformation theory of elastic ferromagnets in terms of Finsler 
geometry to establish a linear spin-torsion relation (de Sabbata and Sivaram, 
1994) which is analogous to the spin-torsion relation obtained in the Einstein- 
Cartan theory of gravity. An interesting expression between the chemical 
potential and torsion is obtained by Ikeda's (1977, 1978) method. A relation 
between torsion and chemical potential had been obtained earlier by Pronin 
(1985; Kulikov and Pronin, 1993) in the context of gravity with torsion and 
quantum materials fields. In Pronin's (1985; Kulikov and Pronin, 1993) 
approach, torsion plays the role of chemical potential in the gravitational 
interaction of fermions with antifermions. 
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2. PARTITION FUNCTION OF THERMODYNAMICS,  
C H E M I C A L  POTENTIAL,  AND CARTAN'S TORSION 

In this section we shall apply the Ikeda metric for thermodynamics 
(Ikeda, 1978; de Sabbata and Sivaram, 1994) 

OS 
g(x) = - - -  (i) 

013 

where the bar over the metric g stands for the average, S -- In(Z) is the entropy, 
and Z is the partition function. The partition function of a Bose-Einstein gas 
is 

Z = e a~ (2) 

where 13 - llkT, with k the Boltzmann constant, IX the chemical potential, 
and T is the absolute temperature. Thus the entropy S in this case is 

S = 13IX (3) 

Substitution of (3) into (1) yields the metric 

g(x) = ix (4) 

The teleparallel Cartan torsion is 

Sijk ~-- ~[igJqk (5) 

where So.k is the torsion tensor. 
Substitution of (4) into (5) reads 

= -g rad  ix (6) 

where ~ is the Cartan torsion vector. Therefore one obtains a nice expression 
between the torsion and chemical potential. This is not the first time that the 
chemical potential has been associated with torsion. Starting from a distinct 
framework Pronin (1985) was able to show that the torsion plays the role of 
a chemical potential in gravitational interactions between fermions and 
antifermions. 

3. PARTITION FUNCTIONS OF ELASTIC FERROMAGNETS 
F R O M  FINSLER GEOMETRY 

In this section we shall apply Ikeda's (1977, 1978) method described 
in the last section to the partition function of elastic ferromagnets in terms 
of Finsler geometry. The partition function is defined as (i, j = 1, 2, 3) 

Z = e~iJgiJ ~x'~) (7) 



Non-Riemannian Geometry of Macroscopic Spin Distributions 1229 

where ~i is the magnetic spin and where gij(x, ~) is the Finsler metric of a 
deformed elastic ferromagnet given by 

gi j (X,  ~) ~" g i j (X)  - -  "~ijk~ k --  "~ijkl~k~ l (8) 

where ~ijk is the piezomagnetic tensor, ~lijkt is the magnetostriction tensor, 
and g, ij(x) is the non-Riemannian metric due to plastic and elastic effects. 
Substitution of (8) into (7) allows us to obtain an expression for the entropy S, 

S -  In(Z) = - [gij - "~ ijk~ k --  "~ ijkl~k~ q ~ ij (9) 

Thus the thermodynamic torsion is given by 

0S 
Sijk = Oti-~]k = --O[i o~jlk 

Substitution of (9) into (10) yields 

-Sijk "~- ~ijk - -  dIi('~jqkl-~) - -  ~[i(~jkls~t~ s) 

(10) 

(11) 

To simplify matters, let us consider only piezomagnetic effects ('Yijk =/: 
O, ~/,'jkt -- 0). Thus the macroscopic spin distribution becomes 

Sijk = Sijk - -  [ ~[i~j]kl]-~ (12) 

Since 3-~ = a~ = 0 in the elastic ferromagnetic, ~ = const locally, and 
therefore expression (12) provides a linear spin-torsion relation (Ikeda, 1977) 
exactly as in the Einstein-Cartan theory of gravity. 

Therefore one concludes that statistical mechanics (partition function) 
applied to thermodynamics and piezomagnetism leads to well-known results 
in the Einstein-Cartan theory of gravitation. This is in agreement with Kondo 
and Amari's (1961) idea that unification among electromagnetism, plasticity, 
and general relativity can be obtained via statistical mechanics. In particular, 
our results agree with Kondo's (1962) idea that non-Riemannian geometry 
can be obtained from Finsler geometry by statistical methods. 
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